Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(12): 8423-8436, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34076416

RESUMO

Protein-protein modulation has emerged as a proven approach to drug discovery. While significant progress has been gained in developing protein-protein interaction (PPI) inhibitors, the orthogonal approach of PPI stabilization lacks established methodologies for drug design. Here, we report the systematic ″bottom-up″ development of a reversible covalent PPI stabilizer. An imine bond was employed to anchor the stabilizer at the interface of the 14-3-3/p65 complex, leading to a molecular glue that elicited an 81-fold increase in complex stabilization. Utilizing protein crystallography and biophysical assays, we deconvoluted how chemical properties of a stabilizer translate to structural changes in the ternary 14-3-3/p65/molecular glue complex. Furthermore, we explore how this leads to high cooperativity and increased stability of the complex.


Assuntos
Proteínas 14-3-3/metabolismo , Benzaldeídos/química , Proteínas de Escherichia coli/metabolismo , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Fator de Transcrição RelA/metabolismo , Desenho de Fármacos , Escherichia coli , Estrutura Molecular , Relação Estrutura-Atividade
2.
Angew Chem Int Ed Engl ; 59(48): 21520-21524, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32816380

RESUMO

Small-molecule stabilization of protein-protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a "bottom-up" approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine-forming fragments. The imine bond offers a covalent anchor for site-directed fragment targeting, whereas its transient nature enables efficient analysis of structure-activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65-subunit-derived peptide of NF-κB with the adapter protein 14-3-3. Those fragments that subsequently establish contacts with the p65-derived peptide, rather than with 14-3-3, efficiently stabilize the 14-3-3/p65 complex and offer novel starting points for molecular glues.


Assuntos
Proteínas 14-3-3/química , Iminas/química , Bibliotecas de Moléculas Pequenas/química , Fator de Transcrição RelA/química , Estrutura Molecular , Ligação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade
3.
Medchemcomm ; 10(10): 1796-1802, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31814953

RESUMO

Protein-protein interactions (PPIs) are at the core of regulation mechanisms in biological systems and consequently became an attractive target for therapeutic intervention. PPIs involving the adapter protein 14-3-3 are representative examples given the broad range of partner proteins forming a complex with one of its seven human isoforms. Given the challenges represented by the nature of these interactions, fragment-based approaches offer a valid alternative for the development of PPI modulators. After having assembled a fragment set tailored on PPIs' modulation, we started a screening campaign on the sigma isoform of 14-3-3 adapter proteins. Through the use of both mono- and bi-dimensional nuclear magnetic resonance spectroscopy measurements, coupled with differential scanning fluorimetry, three fragment hits were identified. These molecules bind the protein at two different regions distant from the usual binding groove highlighting new possibilities for selective modulation of 14-3-3 complexes.

4.
Proc Natl Acad Sci U S A ; 116(23): 11496-11501, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113876

RESUMO

Forward-synthetic databases are an efficient way to enumerate chemical space. We explored here whether these databases are good sources of novel protein ligands and how many molecules are obtainable and in which time frame. Based on docking calculations, series of molecules were selected to gain insights into the ligand structure-activity relationship. To evaluate the novelty of compounds in a challenging way, we chose the ß2-adrenergic receptor, for which a large number of ligands is already known. Finding dissimilar ligands is thus the exception rather than the rule. Here we report on the results, the successful synthesis of 127/240 molecules in just 2 weeks, the discovery of previously unreported dissimilar ligands of the ß2-adrenergic receptor, and the optimization of one series to a K D of 519 nM in only one round. Moreover, the finding that only 3 of 240 molecules had ever been synthesized before indicates that large parts of chemical space are unexplored.

5.
Eur J Med Chem ; 167: 76-95, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30769242

RESUMO

Protein-protein interactions (PPIs) cover a very wide range of biological functions and consequently have become one of the favourite targets for new therapeutic strategies. PPIs are strongly characterised by an intricate and dynamic network of surface interactions occurring between two or more proteins. Because of the complexity of these interactions, many strategies have been applied with the aim to find selective modulators for a specific protein-protein complex. During the last decade, fragment-based approaches have served many drug discovery programs with an impressive increment of contributions, gaining a remarkable role in PPIs modulators' development. In this review, we detail the successful fragment-to-clinical candidate evolutions related to PPI modulation. An overview on the physico-chemical properties of both fragment hits and lead compounds will be presented together with a statistical analysis of their distribution.


Assuntos
Descoberta de Drogas/métodos , Fragmentos de Peptídeos/química , Mapas de Interação de Proteínas , Animais , Humanos , Complexos Multiproteicos/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos
6.
Molecules ; 23(10)2018 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301207

RESUMO

Resistance to antibiotics is an increasingly serious threat to global public health and its management translates to significant health care costs. The validation of new Gram-negative antibacterial targets as sources for potential new antibiotics remains a challenge for all the scientists working in this field. The interference with bacterial Quorum Sensing (QS) mechanisms represents a potentially interesting approach to control bacterial growth and pursue the next generation of antimicrobials. In this context, our research is focused on the discovery of novel compounds structurally related to (S)-4,5-dihydroxy-2,3-pentanedione, commonly known as (S)-DPD, a small signaling molecule able to modulate bacterial QS in both Gram-negative and Gram-positive bacteria. In this study, a practical and versatile synthesis of racemic DPD is presented. Compared to previously reported syntheses, the proposed strategy is short and robust: it requires only one purification step and avoids the use of expensive or hazardous starting materials as well as the use of specific equipment. It is therefore well suited to the synthesis of derivatives for pharmaceutical research, as demonstrated by four series of novel DPD-related compounds described herein.


Assuntos
Antibacterianos/síntese química , Bactérias/efeitos dos fármacos , Pentanos/síntese química , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/patogenicidade , Humanos , Cetonas , Lactonas/química , Lactonas/farmacologia , Pentanos/química , Pentanos/farmacologia , Transdução de Sinais/efeitos dos fármacos
7.
Front Med (Lausanne) ; 3: 75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28154815

RESUMO

The European Lead Factory (ELF) is a public-private partnership (PPP) that provides researchers in Europe with a unique platform for translation of innovative biology and chemistry into high-quality starting points for drug discovery. It combines an exceptional collection of small molecules, high-throughput screening (HTS) infrastructure, and hit follow-up capabilities to advance research projects from both private companies and publicly funded researchers. By active interactions with the wider European life science community, ELF connects and unites bright ideas, talent, and experience from several disciplines. As a result, ELF is a unique, collaborative lead generation engine that has so far resulted in >4,500 hit compounds with a defined biological activity from 83 successfully completed HTS and hit evaluation campaigns. The PPP has also produced more than 120,000 novel innovative library compounds that complement the 327,000 compounds contributed by the participating pharmaceutical companies. Intrinsic to its setup, ELF enables breakthroughs in areas with unmet medical and societal needs, where no individual entity would be able to create a comparable impact in such a short time.

8.
Drug Discov Today ; 20(11): 1310-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26429298

RESUMO

High-throughput screening (HTS) represents a major cornerstone of drug discovery. The availability of an innovative, relevant and high-quality compound collection to be screened often dictates the final fate of a drug discovery campaign. Given that the chemical space to be sampled in research programs is practically infinite and sparsely populated, significant efforts and resources need to be invested in the generation and maintenance of a competitive compound collection. The European Lead Factory (ELF) project is addressing this challenge by leveraging the diverse experience and know-how of academic groups and small and medium enterprises (SMEs) engaged in synthetic and/or medicinal chemistry. Here, we describe the novelty, diversity, structural complexity, physicochemical characteristics and overall attractiveness of this first batch of ELF compounds for HTS purposes.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Química Farmacêutica/métodos , Comportamento Cooperativo , Europa (Continente) , Humanos
9.
Neuropharmacology ; 49(1): 86-96, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15992583

RESUMO

In search of novel therapeutic approaches for Alzheimer's disease (AD), we report herein the identification, design, synthesis, and pharmacological activity of (4-ethyl-piperaz-1-yl)-phenylmethanone derivatives with neuroprotective properties against beta-amyloid-induced toxicity. (4-ethyl-piperaz-1-yl)-phenylmethanone is a common substructure shared by molecules isolated from plants of the Asteraceae genus, traditionally used as restorative of lost or declining mental functions. (4-Ethyl-piperaz-1-yl)-phenylmethanone displayed strong neuroprotective properties against Abeta1-42 and reversed Abeta1-42-induced ATP depletion on neuronal cells, suggesting a mitochondrial site of action. Abeta1-42 has been described to induce a hyperactivity of the glutamate network in neuronal cells. (4-Ethyl-piperaz-1-yl)-phenylmethanone also inhibited the neurotoxic effect that glutamate displayed on PC12 cells, suggesting that the reduction of glutamate-induced neurotoxicity may be one of the mechanisms by which this compound exerts its neuroprotective properties against the deleterious effects of the Abeta1-42. These data suggest that the identified (4-ethyl-piperaz-1-yl)-phenylmethanone chemical entity exerts neuroprotective properties and may serve as a lead compound for the development of novel therapies for AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Fitoestrógenos/síntese química , Fitoestrógenos/farmacologia , Trifosfato de Adenosina/metabolismo , Análise de Variância , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Camada Fina/métodos , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Radicais Livres/metabolismo , Células PC12 , Fragmentos de Peptídeos/toxicidade , Piperazinas/síntese química , Piperazinas/farmacologia , Preparações de Plantas , Ratos , Sais de Tetrazólio , Tiazóis
10.
Angew Chem Int Ed Engl ; 38(10): 1463-1465, 1999 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29711565

RESUMO

The efficient addition of terminal alkynes to aldehydes or ketones to give propargyl alcohols in yields of 66-96 % can be achieved by activation with catalytic amounts of CsOH⋅H2 O [Eq. (a)]. A CsOH-catalyzed addition of acetonitrile derivatives to terminal alkynes is also possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...